Hindman-like theorems with uncountably many colours and finite monochromatic sets
نویسندگان
چکیده
منابع مشابه
Extending Baire property by uncountably many sets
We prove that if ZFC is consistent so is ZFC + “for any sequence (An) of subsets of a Polish space 〈X, τ〉 there exists a separable metrizable topology τ ′ on X with B(X, τ) ⊆ B(X, τ ′), MGR(X, τ ′) ∩ B(X, τ) = MGR(X, τ) ∩B(X, τ) and An Borel in τ ′ for all n.” This is a category analogue of a theorem of Carlson on the possibility of extending Lebesgue measure to any countable collection of sets...
متن کاملOn Groups with Uncountably Many Subgroups of Finite Index
Let K be the kernel of an epimorphism χ : G → Z, for G a finitely presented group. If K has uncountably many normal subgroups of finite index r, then K has uncountably many subgroups (not necessarily normal) of any finite index greater than r. In particular, this is the case whenever G is subgroup separable and K is nonfinitely generated. Assume that G has an abelian HNN base contained in K. If...
متن کاملThere are uncountably many topological types of locally finite trees
Consider two locally finite rooted trees as equivalent if each of them is a topological minor of the other, with an embedding preserving the tree-order. Answering a question of van der Holst, we prove that there are uncountably many equivalence classes.
متن کاملSpaces of Uncountably Many Dimensions*
Riemann in his Habilitations Schrift of 1854 suggested the notion of ^-dimensional space (where n is a natural number) as an extension of the notion of three-dimensional euclidean space. Hubert extended the notion still further by defining a space of a countably infinite number of dimensions. Fréchetf in 1908 defined two other spaces of countably many dimensions, which he called D„ and J3W. Tyc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2020
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14649